Calculus Option Notes




Topic 1:
Essential topics:

1) Limits of sequences - test using L’Hopital or Squeeze
2) Test to see if a function is continuous or differentiable.

3) Rolle and MVT

Does a limit exist?

We then say that ;111‘11 f(z) exists and equals [ if lim f(z) = lim_f(z) =1
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Is a function continuous?

A function f(x) is continuous at the point x, if

lim f(x)= f(x,)

XX
Both the limit and the value f(x,) must exist for f(x) to
be continuous there.

The function is said to be continuous if it is continuous at
all points of its domain.

(l) * We then say that lim f(z) exists and equals Lif lim f(z) = lim f(z)=4&
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Differentiation from first principles

> The derivative, or gradient function, of a function f with
S(x+h)- f(x)
h

respect to x is the function f'(x) = lim
. - . . h )0
this limit exists.
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Key point: to test if a function is differentiable you must first test that it is continuous.

For a function f(x) to be differentiable at a point x:

e f(x) mustbe continuous at x, (and hence lim f(x)
must already exist) S

o f(x) mustnot have a ‘sharp point’ at x,

e thetangentto f(x) at x, must not be vertical.




If a continuous function f{x) is differentiable at x = x, then
the limits: |
lim flath)=f(x) and lim f(xo5h)— £ (%)

h—0— h h—ot h

exist and are equal.
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(a) f (x) = (x - 1)5 is not differentiable at x = 1.
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[ ot Fon Rest Principles ]
¢(x)=|x]| is not differentiable at x = 0.
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Find constants a and b so that the function
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is differentiable for all x > 0.
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(d) Prove from first principles that w(t) is differentiable at 1=5. [6]

[dq diftereakicba f Low Ql@ = L [“{é)

& =0 E- c'.t.‘P

Ll princples I‘(',;) = b T(e) -F)
L=s hoe "

2+ (o) - (2+%0)) 2L
hso B I - N

rL?‘QLI. E Ult\'\ §

IL- 35 \ Q@—S?
5w B 5
N

2337, 3(StW)

-3+ 35+
S+

h




Sequences

The sequence {4} is defined by uy = % forneZ™,

3
a. Show that the sequence converges to a limit L , the value of which should be stated. L= /;.

b. Find the least value of the integer N such that |4, — L] < &, for all n > N where

i) e=0.1;
(i) e = 0.00001.
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Let g(x) = sinx~, wherex € R.
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L’'Hopital’s Rule

INDETERMINATE FORMS

The theorems for limits of functions above do not help us to deal with indeterminate forms.
These include:

Type Description
lim % where lim f(z) =0 and lim g(z) =0

lim f(z) where lim f(z) = +co and lim g(z) = +oo

T—a q(:l:) T—a z—a

lim [f(«)g(z)] where lim f(z)=0 and lim g(z) =

LHOPITAL'S RULE

Suppose f(z) and g(z) are differentiable and g’(z) # 0 on an interval that contains a
point = = a.

If lim f(z) =0 and lim g(z) =0, or, if lim f(z) =400 and lim g(z) = *o0,

then lim = ) = lim @

Lo (1:) s it provided the limit on the right exists.

2% —1 i
Use L’Hopital’s Rule to evaluate: a lim b lim —2
z—0 x z—0 I

a lim (2°—-1)=0 and lim z =0, so we can use L’'Hopital’s Rule.

z—0 z—0

(2 -
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—0 —_
= lim (=)

{L’Hopital’s Rule}

lim

lim 2%]n2
z—0
lim 1
z—0

ln2
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lim £ (Inz)

Lo L Hopital’s Rule
lim £ (z) t . }
lim (%)

lim 1
— 00

{since lim (1) =0}

Z—00

Sometimes you use L'Hopital's rule and still end up
with either 0/0 or inf/inf.
In this case you can use the rule one more time.
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(Total 11 marks)




LUHopital’s rule can also be used to find limits of the form 0 x oo’

or ‘eo —eo, First it is necessary to rearrange these expressions

< >
‘o0?

into a quotient which is the of the form 3 or —.

oo

Using I’Hopital’s Rule, show that limxe™ =0.
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Calculate lim(l— ! ]

x=0| x sinx
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Squeeze Theorem

Squeeze Theorem

If we have sequences {a,,},{b,,} and {c,,} suc}l that

a,<b, <c, forallneZ*
and

lima, =lim¢, =L <o

[ e H—pe

then limb, = L.
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sin#

Use the Squeeze Theorem to find lim

C e 1
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Show that lim— = 0.
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Rolles Theorem and MVT

" Rolle’s Theorem

For a function, f(x), that is continuous on an interval [a,b]
and differentiable on |a,b|,

if f(a)= f(b) then there must exist a point ¢ € Ja,b[ such

that f’(c)=

J(a) = f(b)
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The most common application of Rolle’s Theorem is to establish r
a maximum number of possible roots of a polynomial.

Prove that the polynomial f(x)=x>+3x?+6x+1 has exactly one root.
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e " (—x‘+2x: +x), x<l
, where a and b are constants,

The function f isdefinedby f (x)={

ax+b, x>1

(a) Find the exact values of @ and b if f is continuous and differentiable at x =1.
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Use Rolle’s theorem, applied to f, to prove that 2x‘-4x'-5x’+4x+1=0
has a root in the interval |-1,1][.

(i) Hence prove that 2x* —4x’ = 5x2+4x + 1 =0 has at least two roots
in the interval |-1,1].
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" Mean Value Theorem — qeceralised Ursioa f o\

For a function, f(x), that is continuous on an interval
[a,b] and differentiable on ]a;b[, there must exist a point

b)— f(a)
b—a

c€ |a,b] such that f’(c)= S
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The mean value theorem states that if / is a continuous function on [a, b] and

differentiable on ]a, b[ then f'(c) = w for some cela, b[.
-d

(i)  Find the two possible values of ¢ for the function defined by f(x) =x’+ 3x* -2
on the interval [-3, 1].

(i)  Nustrate this result graphically. [7]
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Prove that |sina —sinb|<|a—b|.

f(b) - f(a)

— ff((;) Set f[:g =Sia 2L
b—a

sinb — sing
s = C05C
b—a

f\q{'.':e !

-7

sinb —sina =|0050|S1 lo.-bl = |b-al
b—a

sina —sinb|<|a—b|

If f(x)is such that f(2)=—4 and f'(x)2-2forall x e |2,7],

find the smallest possible value for f(7)
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= | The function f is continuous on [a, b], differentiable on ]a, b[ and f'(x) =0 for
~all xela,b[. Show that f(x) is constant on [a, b].

Hence, prove that for x € [0, 1], 2arccos x+ arccos(l —2x") =x.
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Hence, prove that for x € [0, 1], 2arccos x + arccos(l —2x")= n.
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f is a continuous function defined on [a, b] and differentiable on ]a, b[ with f'(x)>0
on ]a, b[.

£ Xa Ly 7 K
Use the mean value theorem to prove that for any x, y € [a,b], if y>x

then f(y)> f(x).

MVT have ¢ € Jabl  sech thet

Faxl = D) - Pl )
L -

So Our clﬁia s w9y ¢ [_M"]

[4]

ond o3~ poink s C. .

¢ 'LC\ = ) -‘:C"-!
Y-x

(i) Given g(x)=x-arctanx, prove that g'(x)>0, for x>0.
(i1) Use the result from part (c) to prove that arctanx < x, for x>0,
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Use the result from part (c) to prove that arctanx < x, for x>0,
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Topic 2
Essential Topics:

Solving differential equations by separate variables.
Solving differential equations by substitution.
Solving differential equations by integrating factor
Solving differential equations by Euler’s Method
Sketching slope fields and isoclines
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Separate Variables

eparation or val lables

The second type of differential equation which you need to be
able to solve is one that can be written in the form:

dy
£=J (x)g(y)

dy
At

3&3 = X

jsdd = 57‘ X

% = 7’2_"’" —> 'd"'tJoﬁ"‘r’-'-

Show that the general solution to the differential equation

-iy—=xy—x

dx

can be written as y =1+ Ae*" if y> 1.




Substitution

IO AT

I\CI NN T J.0

Any homogeneous differential equation can be converted
to a variables separable differential equation (if it is not
already) by making the change of variable (or substitution):

y=vX

Here v is a variable and not a constant, so in making this
substitution we must be sure to differentiate the product when

replacing d—’V:
dy _d 9 ()
dr  dx

=x(—|z+(v><l)
X
dv
=x—+v
X

A homogeneous differential equation is one of the form:

v-112)

dy y-addy x2+y

__For example —~
x? dx  2xy

are both homogeneous

because

dy (y T dy _1(x*  y*)_
=== d — 4= |= : i
( . an T P At respectively.
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1 2 £ 2
Find the general solution of = xz—yx,y >0 in the form y? = f(x).
Xy

-l

Let y=vXx

= ~Int ~vel=[nx+C

==Y |n“ -v”] - ln% —C

| ; 1
=> 1—v2 = (;m.x' .
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Slope fields

dy

=x—y*+2
dx Y

Continuing this process for a range of coordinates, we can build
up a table showing the gradient at various points:




And from here we can represent the gradient at each point
graphically by drawing the tangent at that point:

N
Vo

A plot of the tangents at all points (x, ) is called the slope
field of a differential equation.

From the slope field, we can then construct approximate
solution curves that correspond to different initial conditions,
To do so we just observe two rules.

Solution curves:

L. follow the direction of the tangents at each point

2. do not cross.




Isoclines
A curve on which all points have the same gradient is
known as an isocline.

. . d
To find isoclines set EZ = ¢ for some constant c.
X

In the example above, with & =x— y*+2 the isoclines will be

given by: dx

c=x—y*+2 = y*=x+2-c.

Therefore, on the isocline corresponding to:

e =0 (¥ = x+2), thestangents-at-every.point will have
gradiefito

c =1 (y? = x+1), the tangents-at-everypoint-will. have
gradient-l-and so on.
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Euler’'s Method

V.u=Y,+hxf(x,,5,); x,., =x, + h, where h is a constant

(step length)

Euler’s method

Non-Calc
Consider the differential equation & = f(x, y) where f(x,y)=y-2x. C .“nuj‘.. (o|l)
& —

(d) Use Euler’s method with a step interval of 0.1 to find an approximate value for y on C,
4]

when x=0.5.

f(z.. f'j*) Yearl T Yt """t (2"'1"‘)

1-Q =\ 1+ ol ) =1\

In
|

‘;;7.‘(;“ i+ 04 (0.9) = 119

|.|ﬂ-1.(0-3) 119 + 0-‘(0'?‘]) =1.269
= 0.29

—
49 - 1(0-‘3) .29 + Q. (o,“q‘ -

= 0.669 13339

L'ﬁ?ﬂ?’-(n«ﬂ 1-3359+ ot (0.835q)
= 0.5359 = 1.3g949 .39 GsF).

Calculator method




Given that % =x+ 2y, and y = 0 when x = 1, use Euler’s method with a step

value of 0.1 to approximate y whenx = 1.3 .

On paper, set up the following table: [ remember that F(x, y) =

y

1 0
1.1
1.2
1.3

dy]

F(xl"‘l W F x:«)
dy 6y:hxd—y
— dx
dx

(you can pre-fill the x values as you know the step size, and when to stop)

On the calculator... select Recursion

MAIN MENU
A1 2 pf 3

x.”;-&!.
Run-Matrix Statistics

o o g

Graph Recursion

ConicGraphs Equation Program

E -
Financial |v

B
Recursion

n+1

SEL+SJDELETE] TYPE TABLE

Set up the problem by letting x, =a,, y,=b, and z—z c,

F5-SET

‘xn+1 - xn +

E]

Table Setting n+1

En 33

E
Recursion
an+1=an+0.1 [—1]

SEL+S DELETE] TYPE TABLE

e End = number of iterations

® (X0, Yo) = (ag, by)

a,,=a,+0.1




dy dy

yn+1=yn+h><a Wherea=x+2y

2 = F(x,y)=x+2y

E HathRadMNorm]

Recursion
an+1gan+0.1 [—1]
bn+1 Bbn+0.1X(an+20—1

SEL+S/DELETE] TYPE Jn.an-] SET JIFY:IN3

B
Recursion
an+18an+0.1 [—]
bn+1Bbn+0.1X(an+20—1

t
SEL+SJDELETE] TYPE Jn.an:] SET JIFY:INS

b, =b,+0.1x(a,+2b)

F6 —TABLE

N R
Cpr1 — 4y + an &2

scroll down & highlight y,

B (dZc)Real

n+1 an+1 bn+1

1

0
0.1

1
1.1

2 1.2 0.23
3 1.3

0
FORMULA) PIIWAT3 (E3FXSY3 (WEB-6PH) (GPH-CON) (GPH-PLT]

0.396

E MathRadMormil (d7c)Real
bn+1=bn+0.1X(an+2Xbn )

an+l bn+1

(20320 DELE TE|PHASEHt Rt (aiaahy

Using the arrows to select each value in the table gives the maximum precision

available.

Transfer the results

1
1.1
1.2
1.3

E

bn+1 =bn +0.1X (an +2xbn)

n+l an+1 bn+1

1
1.1 0.1
1.2 0.23
1.31Iﬂm

.396
lllﬁﬂblﬂbﬂﬂﬂ@i@ﬂﬂﬁm

0 14

y dy
dx
0 1

0.1 1.3
0.23
0.396

Ignore the first
valueinec,

Fill in last column by doing h x your previous value for c_n+1 and running again.




Integrating factor

KEY POINT 5.4

Given a first order linear differential equation:

d
LHP(x)y=Q)

multﬂn]y through by the mlegratmgfactorl (1) : -é-_r‘."-“‘-lf}

and solve the resulting differential equation. ‘

Integrating factor for eJ‘ P(x)dx
y'+P(x)y=Q(x)

Integrating Factor
Method

d_y+P(x)y:Q(x) X rearfanae, te tLl_‘p

(x)Qx) #* nabpyby IR

L (1:7)= 1(x)Qw)

Iy = jIW Q) % rite downa thig

y=I—(1J5 1(x)Q)dx  salve !




Solve 7_% = Cogx -

Step U) "eafrd.nam wnto %‘-;" x ?(:()j = Q‘El)
x

.d'}-l—'_i.:'tab
>

AX =
fr)= 2 Q0= Gz
stepe) Find T [Lawegeating fack, ]
Tk &J‘?@)

Tl e‘? /x

I(x e

_Isﬁer @)
ruli:i-rlj Q_o}JaJdoA bj I[X) =X

i.dﬁ t = X
>

ax =

S Ty- Srwemin - fiQe i




a
Solve the differential equation costxJ—/ —2ysinx=3"

where y =1 when x =0.

Stesp Ll) f‘qo;r(a.th w ko ;j.;_ & ?(;()j - G\(g_)

| a
cosx Y 2ysiny =3
dax

Ay = 3 seX

L) = - 2Lkanx
=>§y——(2t;:1ﬂx}y:?>escx P( )
X

stepla) Find T fiﬂ‘fﬁjfﬂb"\j ‘I‘\“C}or]
J2@)

>jLJ-l:,cwl-n::c. = j Sias

s =C

= -laltsx)




?S&ef 3 t‘\-'“c'\flj "{j T\2)

ﬁ ~(2tanx)y =3secx

>, 4 e _
Cos % &34 - 72 kanX. s:x:‘ =

T oy X SEL X
ax

ste p (4') ﬂi)j = SI@‘)QLI) A%

|
y= ) I({x)Q(x) dx

Casickj = jt.n?:t.’ssccx

) 2
= =0 (% . 3SecX
d g oC \j\ 5y 3¢

Y= Sec x..'_t:,j CosF

Yy = s«?z.'}[_ s;ﬂ;c_,‘_c—l

S"—QP (5-) [i~d C. 4=\ 2 =O
Yy = Scciz .'}L SinX 4+ ,;"l
| = 5q3(b).'_’;[s;,\n yc )

| = 3¢

\ - o
%

Y :'gse<.176- Ls;nx e '/'3]
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Essential topics:

Fundamental Theorem of Calculus
Improper Integrals

Riemann Sums

Fundamental Theorem of Calculus
For a continuous function f(x) on 'lhc interval [u, b]:
d ¢x .
- -[" @)t = f(x)
dx Ja :
» > any a..wsl-c.l‘.

* {Lm = FY- Ao

PACSIEERD
L L

(05 o O o constant ]

“
- x + 3

N AL akel
us}nj FTC WUWe 3* (esull nneatatty

2

2°
St-r‘b‘“"‘" i
o

—-l""-_...-._.




Possible exam style question:

'

£ 5'13-!-4(: - J ;(&)it |

=

il R") and C.

shep (1) dilluceatiabe \otl Sikes

£
%.i(sﬁ 4 4—0) 2 iL:L S [¢) 4t

C

52t =250

st = P
be+4-o = S\SL"AI: é/

* Nnote ?(C)

Skep (2)




Improper Integrals

Integrals of the form Jm f(x) dx are known as improper integrals.

KEY POINT 2.2

The improper integral Jm f(x) dx is convergent if the limit

lim [ £(x) dx = lim { I(6)} - I(@)

exists and is finite. Otherwise the integral diverges.

ek 80




O

e dx.

Evaluate _[
O

e .
J e dy=lim| e dx
0 b—yeed O

o

&

W= Q|= W[=

= |jim
b—yoo

~, T
O

l

®
&
v

+

= lim

f‘}—}oc

o

[

Cbl

= {im

o
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Evaluate the convergent improper integral J. Xe X

f) b
f xe ™t dx=1lim| xe™ dx
|

Bdeco

= Jim ([~ -

D—on

= lim ([—xe; [e‘])

b—e

= Ilm{ —be* +c3")— 6**’—6“)}

b
1+ b
=2Ze — lim ( )
by ‘ 6!) _
By IHopitals Rule:

um(H”): i e

b—yon & b b—300 6 b

v

I —& ‘d:t)

J xe ™t dx = 2¢™

7¥— Determine for whic_h values of pe R, L x? clix is convergent.

oo 73 &
J xP dx=lim| xP dx
i

1)—) (== '

pt+1 ptl
lim ] if p#—1
b=\ p+1 pt
tim (Inb —In1) if p=—1

Lb=yes




bm-l e 1
lim ve if p# 1
P—yoo F; -+

lim Inb ffpz—'l

L b—>e0

#p>4

ifp<—4

it p=—1

J{ x? dx converges only for p < -1

Or equivalently

A

J‘] — dx converges only for p>1
X7 "

Riemann Sums

4
3 eacty al area \Y"B 4
2

200 F
. E'S'Ellﬁf.b!-

oY > ) + s'ﬁ -—
[« 4 1% 34 Tdg ¥Ix3 =

Estimated Arca = 224, : "

Actual Area = 320. .
jawsar firmann
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3. S 3
3
IS + I & +\2S 4+ I1r6 - 432

&
j,& < £

Estimated Arca = 432, 5 "

Actual Area = 320. PP rienann
Syn

Note —= detceasio [, achon Wes
op Pas. te C'Qall:. ,‘

4
é(‘cd: < S LQ*)

i
Estimated Area=095 5

Actual Arca = 1.09861




For a decreasing function f(x)for all x > a, we have an
upper and lower sum such that:

Y F(k)< | flx) dx< gf(k)

k=a+l

For an increasing function g(x}for all x > a, we have an
upper and lower sum such that:

gg(k)< [ g(x) dx <ki g(k)

=a+l

) Figure 1 shows part of the graph of y = ;l together with line segments parallel to the coordinate axes.

() By considering the areas of appropriate rectangles, show that
2a+1 <ln(ﬂ;1)< 2a—1 )
ala+1) a—1 ala—1)

(i) Hence find lower and upper bounds for In(1.2).
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Essential topics:

Convergence of series using;

1) Integral test

2) Divergence test

3) Geometric sum to infinity

4) Comparison test

5) Limit comparison test

6) Ratio test

7) Alternating series test

8) Absolute and conditional convergence

Integral test
* Integral Test
Given a positive decreasing function f(x), x 21,

if [ f(x) de is;

e convergent then Z f(k) is convergent
k=1

o divergent then Z f(k) is divergent,

k=1




pr-]
. \
dekernine £ g :7:\ ConJQragy or a-wuaes

nst

/|

5o Seres Convges

cheu that tle Seaes
£ cnpottanl resolby

‘Z K' ‘ &iuatsQS

[Cal\e
t ks te Coaverqe &S
Va9 Lo\l expec 3

ehe 6'9.1/0'-‘\‘2 Ll.,-'- ,..'a- L .. eoao%ges k= D

2 ' 4
60&' no °(




20
J-;‘_Cljt
|

(7]
Sooas | ddeuges the a
L}

yoa{ht‘\‘ Seaes orit\ntbe seaes

y finding the nth partial sum of the following series, determine whether the

= 3—k
) D
k=1

|

The sum of »n terms of a w(r"-1) wu(l-r")

finite geometric sequence T fo AT® 1

The sum of an infinite < u, ‘ |
: =— Irl<
geometric sequence iy
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Divergence test

YPOINT 3.3

Divergence Test

If }(irn up#hor if the limit doesmotexist, the series Z”k is
—}00 oy
divergent, =

‘[ Urm wwn =9 then e haw No &nrornaE;of\
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= 1243
Show that the series ZM‘LI
k=1 4k* +3

diverges.

L)

2
To show that limu, 0 we need _ K+ 3k+1
oo

4k2 +3
to manipulate v, into a form

that enables us to find its limit _ 745
ask — oo 4+5

i
IImuk:thO

k3o

’ Z11<2+E’>1L+1 B
ence a1 B iverges.

R

R

Comparison test
KEY POINT 3.4,
Comparison Test

Given two series of positive terms Zak and Zb;,. such

that L g <b, forall k e Z*, then if: = =

Zbk is convergent to a limit S, Zak is also convergent

k=1 Je=1

toalimit T whereT'<$

Za,.l is divergent, so is Zbk

kl
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b . - . 1
~ Establish whether or not the series Z converges.
k=1

k
528 +3 9enr\¢k’r.‘¢_/

? Secies asefol

7

S

The series is similar to > which
k=1 “

we know converges {if is a geometric

ur
L]

series with r =% }, so let’s start by
considering this

1

<—1- for allk e Z*
2k 3 2k

1 [

= 4 o
and since ZE;; converges, so does 2 by ;
k=1 .

et Dk 1.

the Comparison test,




= é SI'A"\
bt S au
3

o« (onbPare with Swmilar  secies -

b4 € b

S2 ek ¢bh« b an k.
s L
k (»nYerges . £ ak ‘~semes .

AN
—t g bl

cliu.na:s (_? Sur,e3

\

ooh M o~ 7a’
é '/h ck'.w.r‘jt'.s

Y~
= 9L




]ULLA does (ovrporisan Lesk ok ok ?
E’a g édk 2 bw
ok < by

B‘J*- 2 ‘DK MUL"SLE -3p b\\th D \;Nrbfhtk\.ﬁn Q&ﬂt

£ a\k,
0/_; é&\r.. C.nnun-rju —_ -]-LL-\_ ne ..'.\‘:arnd.-\'g,\
aheut Sl

Ca tL-'tb Sikvabian ose e Lt yparisan Eest

¢ b«

~ For example the series Z
k=1

2k -1
- 1

Comyacs s % .

3&::1«:.7:«: €= 1o

L-f'\r o r\'\cn.'\\'a n"

D.E 2';"_'11. Cnnuﬂ..rgQS S= a®
g...\;-a.al: é "1"?__..




Limit Comparison
'KEY POINT 3.5
Limit Comparison Test

Given two series of positive terms Zak and Zbk , where
k=1 k=1

1imb—k = [ >0, then if one series converges so does the
s by

other and if one series diverges so does the other.

BEAM WANY

R

| Choose as b, the general term of the series fo which you

T

is convergent.
261 5

Show that the series Z
k=1

S
Let /." W o

a‘k = ahd bk == "T_k

a, 1 2k

b, 26—1 1
21(
Dk 1
o

@T

a

Hen
ence §2k—1

converges by the Limit Comparison )
Test,
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Limit Comparison Test

Given two series of positive terms Z“k and Zbk , where

k=L k=1
. a : .
lim—=% = 1> 0, then if one series converges so does the

k—oo bk

other and if one series diverges so does the other.

(A

£\

ten srder as vei(ial  senes




Alternating Series

P

Alternating series

. : ol
We have just seen that the harmonic series Z — diverges,
k= K '
but what about the same series with alternating positive and

negative terms?

- 1 1 1 1
P ) B B it S
P k 2 3 4

Alternating Series Test

If for an alternating series Zuk:
k=1

o |t | <]y | for sufficiently large k
o iim[ukb[) »

then the series is convergent.

\2 The alternating harmonic series

- 4=y
2 3

1
4
satisfies

(1) by < b, because
n+1

e 1 1
(ii) im b, =1lim —=0

n—® n—x N

so the series is convergent by the Alternating Series Test.
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How many terms of the series Y (~1)" N
k=i <

is it necessary to take to find an approximation that is accurate to within 0.001?
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Absolute and Conditional convergence

A series Z“k is absolutely convergent if the series Z‘ ty |
k=1 k=1
is convergent.

Ei If a series is absolutely convergent, then it is convergent, i.e.

-
§
|
i . o ) ) oo ’
| if Z] u; | is convergent then so is Zuk i
| k=1 k=1 |
i |

If a series Zuk is convergent but ZI"‘#: f is divergent, then
pan k=1
the series is conditionally convergent.
, N
nebe b Z |luw) (onstraes = S e ~neges

Z Lok anverqes




15 o ovutsb\'or\ eskeg s e Sedes C‘““"U‘gu\t"

LE ) use  alelinating senes  Lesk
test  Far alsslate  (oavqnts

&J L \ “ - seAes c,enég,csu\t -
/—'
- ¢ &k (5, 5% olselurtly oo

onditio neN4 77

APS seraenla C'-"‘a‘ o-\DSo\"be-
bcsk b_a-g Cond® % Con JuzJLACI-

éuv.. ond i\u\&\ Convige c\len PR

Suxw (o nytrae ok )| dieme e
> 2\ Buseige T "ykonel

Use of absolute convergence and alternating series test
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Show that Z is convergent.

: best R
on wrges ) by Lompovison =9

u,\-’UJcs

erqenk -
&s ALS-:IJ&EU Lor\dl-gnb &.\’S’e Convery

ond




nek oawbtes “qu'j

Qlu(nal:inn Gesk:
Bob Z]u-l-

Ne lL&ﬂ\ é

S \rj C.‘«?ar'tsoa Zlu-.l Cmum"jcs
t

. Lua ConJerys

not dwﬁ&ﬁ“\j Se Canl use
a.u;uM\-'\ﬂJ Lest

If a series is absolutely convergent, then it is convergent, i.e.

if Z} | is convergent then so is Zuk
k=1 k=1
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Alternating Series Test

If for an alternating series Y u;:
k=1

e |t | <|u | for sufficiently large k
' W
.9 £]mluL|=O N ) 2.‘?0,&,\5(&\5 fo U

A T d oy
then the series is convergent.
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Absolute or Conditional convergence?
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Alternating Series Tést

If for an alternating series » 1y
k=1

o |t | <] | for sufficiently large k
o iimluk\zo R

then the series is convergent.
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It a series is absolutely convergent, then it is convergent, i.e.

it |u | is convergent then so is >u
k=1 k=1
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Ratio test

Ratio Test
(iiven a series 2“-'” if;
; k=1

.
1-_ '“kﬂ § . gt o T o - ~ :
° lm|—|<1, then the series is absolutely convergent

K=o ”ﬁ: I'

(and hence convergent)

. '| |

M D

o lim{—"=|>1, then the series is divergent

. k o

o lim|—"~|=1, then the Ratio Test is inconclusive.

e
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» 3
, n
IETUIT Test the series 2, (—1)" > for absolute convergence.
n=1

SOLUTION We use the Ratio Test with a, = (—1)"n’/3"™

(=1)*(n + 1)°
3.ﬂ+1 _ (H + 1)3 3.'1
(=1)n’ 3t A

3

nr 1) 1+ 1) S 1o
_ | == — ] 5=
n 3 n 3 1

Thus, by the Ratio Test, the given series is absolutely convergent and therefore
convergent.

Summary of tests for convergence

— - i i — .
Test Series —‘ Convergence or Comments
Divergence

nth term \ Diverges if lima, # 0 If lima, = 0, testis
Ny e .

dinrg[nCQ ' inconclusive

_Gt‘;m:lric_ : Converges to sum, if Useful for

series : romparison Lests.
series S, = L »M < 1. Diverges comparl

R
otherwise.

p-series S Converges when p > 1, Useful rpl'
otherwise diverges. comparison tests.

| Integral g a = [ Converges if I'_f'(_t)dr
H E A

f(x) must be
continuous, positive,
converges; diverges if and decreasing,

l j | f(x)dx diverges.




Comparison

Limit
comparison

Ratio

Alternating

if Z/, converges and

o -
a, <b, for all n then Za”
converges. If Lh"
diverges and @, 2 b, for

all n, then Zau diverges.

\
If lim Ir(:, ceR',
wonl b

\ %% /

{
a,

then both converge or
both diverge.

|
ia

a, l

HH

converges (absolutely) if
L < 1, and diverges
otherwise.
Converges if a, 2 a, | for
all k, and lima, = 0.

nerm

If lim —" = L, the series | ;e r — 1.

{ > la,|= 24, converges.

The comparison
series is often
geometric or &
p-series.

To find b consider
only terms of a_ that
have the greatest
effect on the
magnitude.

Test is inconclusive

Only applicable to
alternating series.

If Z a, converges,

but Y _|a,| diverges,

£
then Y a, converges
”

conditionally.




1. If the series is of the form 3 1/n?, it is a p-series, which we know to be convergent
if p > 1 and divergent if p = 1.

. If the series has the form £ ar” ' or X ar”, it is a geometric series, which converges
if |7| < 1 and diverges if | 7| = 1. Some preliminary algebraic manipulation may
be required to bring the series into this form.

. If the series has a form that is similar to a p-series or a geometric series, then
one of the comparison tests should be considered. In particular, if a, is a rational
function or an algebraic function of n (involving roots of polynomials), then the
series should be compared with a p-series. Notice that most of the series in Exer-
cises 11.4 have this form. (The value of p should be chosen as in Section 11.4 by
keeping only the highest powers of n in the numerator and denominator.) The com-
parison tests apply only to series with positive terms, but if £ a, has some negative
terms, then we can apply the Comparison Test to £ | a, | and test for absolute
convergence.

4. If you can see at a glance that lim, .. a, # 0, then the Test for Divergence should
be used.

5. If the series is of the form £ (—1)" 'b, or £ (—1)"b., then the Alternating Series
Test is an obvious possibility.

6. Series that involve factorials or other products (including a constant raised to the
nth power) are often conveniently tested using the Ratio Test. Bear in mind that
|@,+1/a,|—> 1 as n — o for all p-series and therefore all rational or algebraic
functions of n. Thus the Ratio Test should not be used for such series.

1. IWM&HMW

8. If a, = f(n), where _f,’ f(x) dx is easily evaluated, then the Integral Test is effective
(assuming the hypotheses of this test are satisfied).

o n—1
EEEEE]EMJFI

Since a, — 3 # 0 as n — %, we should use the Test for Divergence.

= Y+ 1
EXAMPLE 2 [ i it

o1 3n +4n? + 2

Since a, is an algebraic function of n, we compare the given series with a p-series. The
comparison series for the Limit Comparison Test is Z b,, where
Jn? n3/? 1

b” — — —
3n3 3n? 3n32

1 EXIETE 3 e

Since the integral L”“ xe* dx is easily evaluated, we use the Integral Test. The Ratio Test
also works. —

nS

nt+1

S (-1

Since the series is alternating, we use the Alternating Series Test.




1;21;
20

k=1

Since the series involves k!, we use the Ratio Test.

i 1

nm1 2+ 37

Since the series is closely related to the geometric series = 1/3", we use the Comparison
Test.




Essential topics:
Power series - radius of convergence
Taylor and Maclaurin series

A power series is an infinite series of the form:

Ny (2~ b)Y = ay +a,(x—b) +a,(x — b +a,(x — b)} +-..

k=0

Often b =0 and this reduces to

Zak x* =ay + ax + a,x* +ax3 + ..
k=0

FO(‘ e_;go“\?\t . .Po;,,)q_(' sen ey € ?fQS&Aka\iOA c('
\
Ix 2K

(et e B AL o () -

~ 4
= | =2 a2 -7'-34-%---'

Som o infiniby of georekdc, Ficst &m | raks =

3 [ 5 SrY \
. 1 — —
w |-X 4+ -2x < ./
|- ¢ 1 =-=-2

Power Seeieg representation of
\ L 3
—_— = L4+ 2x +(2X) & (2*) ¥ - -
s @ @)

e S, Witk Wy =] = 9

goﬁ = . S -/
| -1%x

KEY POINT 3.13 ) e

The largest number R € R* such that a power series
converges for |x —b| < R and diverges for |x—b|> R s
called the radius of convergence of the power series. It
may be determined by the Ratio Test. If:

e R=co then the series converges for all xeR.

e R=0 then the series converges only when x =b.




This is nearly a complete description of the range of values for
which a power series will converge but since the Ratio Test does
not help at the points x=—R and x = R we need to consider
these separately each time. |

KEY POINT 3.14

The interval of convergence of a power series is the set of
all points for which the series converges. It always includes
all points such that | x — b| < R but may also include end
point(s) of this interval.

o0 A

The exponential series is given by e* = Z "
“~ n!

(a) Find the set of values of x for which the series is convergent.

Qn+1 — .
——| <1, then ) a, Iis absolutely convergent.

n=1




L\:O < \ :3'0& x
nl

. Qn41 = .
1 If lim |——|<1, then ) a, is absolutely convergent.

n—oo | Gp n=1

T\\u&%(t_ Qeens ¢S c.-wt-rju'-'— foc o X

e L= 08, gém—_l

Find the interval of convergence of the infinite series

2 3
(x+2)+(x+2) +(x+2) .
3x1  32x2  33x3

(10)

n .
— oo
Up = lZ_'l’ 1) 1 f Iim “;ﬁ <1, then a, is absolutely convergent.
n—00 1

- n n=
3w
n+\ "
(2en) (a+2)
A
':;u.l “ Ln.dt-\) 3:\ -~

ti-r'l.)n* ' '3“, N

nal

3 (n+ )




) . 3.

[z:-u.)h . 3"*‘.((\4- l)

(WS (x-n.) n |

n-=>& '_i,(n-n)

lngri kal Lok n

L0
oo

&FLU"&E"‘E! L.)"" to N.

O

Ln [JC"") - | xX+%

1 If lim |22 <1, then 3" a, is absolutely convergent.

Wi an n=1

So Sants C""‘\’U‘Jht wlen s Umit <)




Se -S< X < | aives

neAE cest boondories z =-S

—00

‘ a . . :
If lim || =1, the Ratio Test is inconclusive. %}
an

When L= 1 -

] 2 3
(x+2)+(x+2) +(x+2) .
3x1 32x2 33 x3

condJ ijln ce

X =

Likea 5. 2

' 2 3
(x+2)+(x+2) +(x+2) ¥
3x1  32x2  3'x%3

3 ar

If the alternating series Y (—1)"~'b, = b; — by + b3 — .... satisfies

n=1

0<byy1 <b, forall neZ*, andif lim b, =0,
n—oo

then the series is convergent.




nkeeJal Convergenl

-5<& X <

7 IETT) For what values of x is the series 3, n!x" convergent?
n=0

SOLUTION We use the Ratio Test. If we let a,, as usual, denote the nth term of the series,
then a, = n!x". If x # 0, we have

tim 1921 | = fim (n + 1)1x""!

= lim (n + 1)|x| =
a, n—sz nlx n—sa

n

By the Ratio Test, the series diverges when x # 0. Thus the given series converges only
when x = 0. =

x _ 3 n
7 IETTZT#] For what values of x does the series 2, (=3 converge?
n=] n

SOLUTION Leta, = (x — 3)"/n. Then

ap+1 (x = 3)n+l n

di n+1 .(x—3)"

1

f e
n

|x—3| = |x-3| asn—ow

By the Ratio Test, the given series is absolutely convergent, and therefore convergent,
when |x — 3| < 1 and divergent when |x — 3| > 1. Now

z—3]<1 €& -1<x—3<1 & 2<x<4

so the series converges when 2 < x < 4 and diverges when x < 2 or x > 4.

The Ratio Test gives no information when |x — 3| = 1 so we must consider x = 2
and x = 4 separately. If we put x = 4 in the series, it becomes = 1/n, the harmonic
series, which is divergent. If x = 2, the series is = (—1)"/n, which converges by the
Alternating Series Test. Thus the given power series converges for 2 < x < 4. [




@ k

(a) Consider the power series Z k(%] .

(1)  Find the radius of convergence.

(i)  Find the interval of convergence.

1 If lim |22 < 1, then 3 a, is absolutely convergent.

n—oo | an n=1

kq\

&)

k(%)

bn | (<) (%)

K.
4

| (NN Q“"‘! \1\

2K

e~ - l'?-\
® = 2 —

Ed

-
|2l & 2 1< T <2

Qadius of C-n-’ujzn‘-“ =é




f\!.‘)','k Q\A(Ck l:nodr\&&fj ~x = 9 K= -2

ak t.Lgx ? Qiﬂt s :

, ’p] —_ l If lim Cnt1] _ 1, the Ratio Test is inconclusive.
e ——— n—o00 Qn
P

® k
Consider the power series Z k(g) .

when * =1

,a
ezt

If the alternating series 3 (—1)""'b, = b; — by + b3 — .... satisfies

n=1

0<bny1 <b, forall neZ*, andif lim b, =0, A

then the series is convergent.
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Find the radius of convergence of the series

a Sl .
1 If lim || <1, then > a, is absolutely convergent.
n=1

T—00 a"

o' A\

SISO

\

(!’\-\ 1) 3™ Q\*‘J 3"

AP ~
t—\) 9 A (.r\-l-\) b

)3 L )
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x| < 3

-3 X (3

adius al; r_.anuc.rjmc-ﬁ- =3

Maclaurin and Taylor Series

Maclaurin series

()= £O)+xf'0)+ 7 ['(O)+...

Taylor series (x—a)’

S0 =f@+(x-a)f @+ =S (@+.

Taylor approximations

(withcrrorterm R,(x)) /)= f(@+(x-a)f@)+..+ D

f"(a)+R,(x)

n!

Lagrange form R ()= £ ()
) (n+1)!

(x—a)"", where c lies between g and x

Maclaurin series for . x?
special functions e =l+x+ TR

x}

+
In(l+x)=x——+—-...
(I+x)=x e

. X
sinx=x——+——...
3! 5!

4
X

2
cosx=1-—4+——...
2! 4!

x x
arctanx =x——+——...
3 5




Find the Maclaurin series for:
(a) f(x) =e* (b) g(x) =sinx

Give your answers in the form 2 o X!

= F(0)=1
= f(0)=1

= (0)=1
= Tr-u)(o) = 1

arms  phsos P
Ho) o)y | 1 0)_.

f(x)= {'JJ_+ =




! l\) = 6inX ?

f'(x)=cosx =
il .

f(x)=—-siny =

f”(x)=—cosx

P (x)=sinx =

fO (x)=cosx =

Find the Maclaurin series for f(x)=In(1+ x), giving your answer in the form zrrk.\'*',

F(x)=In(1+x) = f(0)=0
Fx)=(1+x)" = (0)=1
F'(x)=—(1+x)" = f"(0)=-1
F(x)=211+x)" = #"0)=2l
Fl4) (\) - —:_‘)![‘1 Y 4 F4) (()) = 3]

f'—'lr:'.‘_ (‘) — 4 ,[I | “) ]r.{::_]{l:)) = 4 |

>
5




KEY POINT 4.2
The truncated Maclaurin series:
nooglk) 0 (0 ~ A 0 i 0
-f_((])\k —_ ﬂ ) +i (_)x+ l (_)x— oo seoh f_ ( ._)_.\:r:
k! 0! 1! 2! !
is referred to as the nth degree Maclaurin polynomial,
p.(x) of the function f(x).

KEY POINT 4.3
For a function f{x) for which all derivatives evaluated

at x = 0 exist:

HR)
k=0 s

where the error term R, (x) is given by:

L)
R, (x)==——""=x"1 for s e |0
K, (2 3 orsomece |, x
(n+ 1! 10,
I'his is sometimes referred to as the Lagrange form of the
error ferm.

(a) Find an expression for the error term in approximating e* by its 2nd degree Maclaurin
polynomial.
(b) Give an upper bound to 4DP on the error when using this approximation to find *”,

T 1

0.75

(2) The 2nd degree Maclaurin polynomial gives the

appmxii‘nation

x2
e¥ =1+ x+—
2

g

with error term

76 (c)x®
5]

B e°x®

Y

R, (x)= cel0,x]




(b) Taking x = 0.75 we have

¢0.75%
g, (0.75) =2 - ¢ €10,0.75(

075 o)
- R (075) < "'_g'l'i = 01489




Using the Maclaurin series for cos x, find the series expansion of cos(2x?)

We just need to substitute 2x° into the *
known series for cos x

Using the Maclaurin series for sin x and €, find the series expansion of " ¥ as far as the ferm in x".

We start by substituting the series fors®
sin x, only going as far as the x* term

We now use the series for e*®
only going as far as x* and
then expand




.

f(x)= /(‘1)+/ﬂ(\ —ad)+ /;(‘“) (x—a)+ /”;#) (x—a) +---

This is known as the Taylor series. All of the results we have
used for Maclaurin series generalise in this way.

Taylor approximations

For a function f{x) for which all derivatives evaluated
at a exist:
. - (x—a)" () ,
fla)+(x—a)f'(a)++ = fY"a)+ R (x)

n.

where the Lagrange error term R, (A) is given by

£ (e)

R, (r) ~(x—a)"™" forsomece ]a,x[

=




(a) Find the Taylor series expansion for f{x)=Inx around the point x - 1.
b p :
(b) Using the 4th degree Taylor polynomial as an approximation for this function, find the

, : 1 3
maximum error for x € > L

flx)=lnx = f(1)=0
Ffx)=x" = f(1)=1
F(x)==x2 = F(l)=-1
f“(x)=2Ix% = f"(1)=2I
F) (1) = ]

FO 1) = 4]

(k) We have:

."(.r)—(.\'—'})—(""’ Jj +




1. (a) Find the first three terms of the Maclaurin series for In (1 + &%).

(b) Hence, or otherwise, determine the value of lim

2In(l+e*)-x-In4

x—=0 x

retheod (\) .

-

e‘=1-+-x+x—l+... y &
2! . ] in(14¢ )

In(l4+x)=x -4 ..
273

A

X
|n(l-|l’. ) = \r\(l-s \+‘JC+}4 +...
&

I\'\"I. » lr\( l.+u~)

Nnow s

1n(l+x)=x—£+£—...
2 3

)
(Total 10 marks)




n{kLQ 4 (‘1) Find the first three terms of the Maclaurin series for In (1 + %),

f(x)=f(0)+xf'(0)+%f’(0)+...

-[(“) = Ir\(\.}go)

a
e

£ (%) .

| +€

f[ﬁ) '—'-l—\:-l = ‘/L

1

L
In(1+e ) = |nl + ')'.(_‘/L) + }Q

cavld use LHspital

X A e 4
Hence, or otherwise, determine the value of lim i ) x—In .
x-+0 x°-

]
|-

2a(14X) = 2laL + xR+ 3(-1 . 4 hidher poes »

2

tU'\ 1-"\1*. y

L ...+lualer poves x - x _)
y G B /Af- 3 n#
x:..

¢ 3
p DS X
';/*L'j\"u pe

(™

g3




T
(a) Find the Maclaurin series for y up to and including the term in X given thaty = - E

when x = 0.

f(X)=f(0)+xf'(0)+%f'(0)+...

fey= 4

M) = s + Klwd) = 0

; 4y -gsecx -84 pax = -Sie¥
d" AxX-

(&- = ~Sunl ‘r'jSCLL; <o 3\)_\-“\1‘-
AL ax

.-gt‘ﬂ’t .'-ljscglx - ;‘g_‘-mr\#-
o x




The function f'is defined by

fx) = ln(L}
1-x

(a) Write down the value of the constant term in the Maclaurin series for f(x).

(b) Find the first three derivatives of f(x) and hence show that the Maclaurin series for f(x)

2 3
up to and including the X term is x+ xZ - x3 .

f(x)=f(0)+xf'(0)+;—2!f'(0)+...
r‘h)= |r\(-l-{"‘°) = O

f('x) A )-

()




Use this series to find an approximate value for In 2.

Use the Lagrange form of the remainder to find an upper bound for the error in this
approximation.

(e) How good is this upper bound as an estimate for the actual error?
)
(Total 17 marks)

N

Il'\?. L Gn‘t

= 2 -2X
‘4.:: w0

Use the Lagrange form of the remainder to find an upper bound for the error in this
approximation.

n+l

, where ¢ lies between a and x




) - Eles)
34 (1-¢)

. . - O
0sC Eﬁf’ﬂ-"ﬂlbnli r\nCl&er (‘_p_;\‘tu& ok XK=

. . ~\
m(d‘“ﬂh\\:’\ c-:,r ln T usedh 20 = /2’

&
Q_‘g.("-l) = (‘L‘/"m)

14-[1-6)+

U’

ﬁ_n}

%)

(i) Determine the first three derivatives of the function f{x) = x(In x — 1).

(i) Hence find the first three non-zero terms of the Taylor series for f{x) about x = 1.

(7
(Total 12 marks)

fl)=lnx—1+1=Inx
= -

X

S = -

X

(x;!a): f(a)+...

F) = PO ) PO v ) 1Y) - el P
2 6

f(x)=f(a)+(x-a)f'(a)+




R M) e ) FO) o ) FO L)ty
p 1

ﬁn—xﬂnx—l) Lb} = -\
f'x)=Inx-1+1=Inx

1
OR

x

fm(x) = - Lz

X

2 s e e @)
2 &

The End!




