HL Maths notes

1 Algebra

1.1 Sequences and Series

Arithmetic progressions

- $T_{n}=U_{n}=a+(n-1) d$.
- A sequence is an A.P if $T_{n}-T_{n-1}=d=$ constant.
- $S_{n}=\frac{n}{2}(a+l)=\frac{n}{2}(2 a+(n-1) d)$.
- $T_{n}=S_{n}-S_{n-1}$.
$\underline{\text { Geometric progressions }}$
- $T_{n}=a r^{n-1}$.
- A sequence is a G.P if $\frac{T_{n}}{T_{n-1}}=r=$ constant.
- $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$.
- $|r|<1 \Longrightarrow S_{\infty}=\frac{a}{1-r}$.
- $|r|>1 \Longrightarrow$ divergent.

1.2 Summation

For $\sum_{r=m}^{n} u_{r}$, the number of terms is $(n-m+1)$.
$\sum_{r=1}^{n}\left(x_{r} \pm y_{r}\right)=\sum_{r=1}^{n} x_{r} \pm \sum_{r=1}^{n} y_{r}$
$\sum_{r=1}^{n} k u_{r}=k \sum_{r=1}^{n} u_{r}$
$\sum_{r=m}^{n} u_{r}=\sum_{r=1}^{n} u_{r}-\sum_{r=1}^{m-1} u_{r}$
Useful sums:
$\sum_{r=1}^{n} r=\frac{1}{2} n(n+1)$
$\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)$
$\sum_{r=1}^{n} r^{3}=\left(\sum_{r=1}^{n} r\right)^{2}=\frac{1}{4} n^{2}(n+1)^{2}$

1.3 Permutations and combinations

$$
{ }^{n} C_{r}=\frac{n!}{r!(n-r)!} \quad{ }^{n} P_{r}={ }^{n} C_{r} \cdot r!
$$

If m objects are identical and the remaining are distinct (a total of n objects), permutations $=\frac{n!}{m!}$

1.4 The Binomial Thoerem

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\cdots
$$

1.5 Mathematical induction

1. Let P_{n} be the statement: ello for all $n \in \mathbb{Z}^{+}$.
2. For $n=1:$ LHS $=$ something. $\mathrm{RHS}=$ something $\Longrightarrow P_{1}$ is true.
3. Assume P_{k} is true for some $k \in \mathbb{Z}^{+}$.
4. Showing that P_{k+1} is true: it is true!
5. Since P_{1} is true, and P_{k} is true $\Longrightarrow P_{k+1}$ is true, by Mathematical Induction, P_{n} is true for all $n \in \mathbb{Z}^{+}$.

To do the inductive step:

- $\sum_{r=1}^{k+1} u_{r}=u_{k+1}+\sum_{r=1}^{k} u_{r}$
- $\frac{d^{k+1} y}{d x^{k+1}}=\frac{d}{d x}\left(\frac{d^{k} y}{d x^{k}}\right)$
- For divisibility, let the expression $=$ a multiple of m. You can always rearrange the inductive hypothesis.

2 Functions and equations

- A function is a to-one relationship.
- If the vertical line $x=a$ cuts the graph at one point only, then f is a function. If it cuts more than once, give an example.
- If a function passes the horizontal line test, it will have an inverse.
- The inverse is just a reflection of the graph in the line $y=x$.
- For inverse functions, $R_{f}=D_{f^{-1}}$ and $D_{f}=R_{f^{-1}}$.
- For $g f$ to exist, $R_{f} \subseteq D_{g}$.
- $D_{g f}=D_{f}$.
- $R_{g f}=R_{g} \mid\left(D_{g}=R_{f}\right)$.
- $(g \circ f)^{-1}(x)=\left(f^{-1} \circ g^{-1}\right)(x)$.
- $f f^{-1}(x)$ may not necessarily intersect with $f^{-1} f(x)$, it depends on the domain.
- For a periodic function, $f(x)=f(x+c)$.

2.1 Graphs

- To transform, TSST. (translate and stretch) x then (translate and stretch) y.
- For $y=|f(x)|$, retain $y \geq 0$, then reflect $y<0$.
- For $y=f(|x|)$, retain $x \geq 0$, then reflect $x \geq 0$ to the left of the x-axis.
- For each transformation, you're allowed to replace x by something else.

2.2 Polynomials

- For a polynomial of degree n :
- The sum of individual roots $=-\frac{a_{n-1}}{a_{n}}$
- The sum of (choose 2) roots $=\frac{a_{n-2}}{a_{n}}$
- The sum of (choose 3) roots $=-\frac{a_{n-3}}{a_{n}}$
- The product of roots, i.e the sum of (choose n) roots $=(-1)^{n} \frac{a_{o}}{a_{n}}$
- For the special case of a quadratic: $\alpha+\beta=-\frac{b}{a}, \alpha \beta=\frac{c}{a}$
- A polynomial of degree n has a maximum of n roots, but some of these may be complex.

2.3 Circular functions and Trigonometry

- The ambiguous case of the sine rule occurs when the angle you are trying to find is opposite the longest side.
- $\sin (-\theta)=-\sin \theta \quad \tan (-\theta)=-\tan \theta \quad$ (odd functions).
- $\cos (-\theta)=\cos \theta \quad$ (even function).
- For $\pi \pm \theta$ or $2 \pi \pm \theta$: sin-sin, cos-cos, tan-tan.
- For $\frac{\pi}{2} \pm \theta$ or $\frac{3 \pi}{2} \pm \theta$: sin-cos, cos-sin, tan-cot.
- $\tan x=\cot \left(\frac{\pi}{2}-x\right)$.
- $\sec x=\csc \left(\frac{\pi}{2}-x\right)$.
- The domain of $\arcsin x$ and $\arccos x$ are $[-1,1]$.
- $\cos (\arcsin x)=\sin (\arccos x)=\sqrt{1-x^{2}}$.
- A circle with centre (h, k) and radius r is described by:

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

- To simplify an expression with trig, it may help to use the half angle formula.

$$
\frac{\sin \theta}{1+\cos \theta}=\frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{1+2 \cos ^{2} \frac{\theta}{2}-1}=\tan \frac{\theta}{2}
$$

2.4 Systems of equations

- A system of equations can be written as an augmented matrix:

$$
\begin{gathered}
2 x+3 y+4 z=2 \\
3 x-2 y+z=-3 \\
x+4 y-z=5
\end{gathered} \rightarrow\left(\begin{array}{ccc|c}
2 & 3 & 4 & 2 \\
3 & -2 & 1 & -3 \\
1 & 4 & -1 & 5
\end{array}\right)
$$

- A system is consistent if it has solutions.
- A system is inconsistent if one of the rows reduces to $0=a$.
- If the last row reduces to $0=0$, there are infinitely many solutions and the general solution can be found by setting $z=\lambda$ where λ is a real parameter.
- If the determinant of the 3×3 matrix is zero, then there is no unique solution (i.e either no solutions or infinite solutions).
- This links to planes, since the Cartesian equation of a plane is $a x+b y+c z=d$.

3 Vectors

- A vector $\overrightarrow{A B}$ can be represented by a straight line, with an arrow, joining A and B.
- A vector can also be denoted with a lower case letter, e.g a, which is written with a tilde below it.
- A position vector defines the position of a point relative to the origin. $\mathbf{a}=\overrightarrow{O A}$.
- The Cartesian form of a vector: $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, or $\mathbf{r}=\left(\begin{array}{c}x \\ y \\ z\end{array}\right)$
- $|\mathbf{r}|=\sqrt{x^{2}+y^{2}+z^{2}}$
- A unit vector: $\hat{\mathbf{r}}=\frac{\mathbf{r}}{|\mathbf{r}|}$
- The Ratio Thoerem: $\overrightarrow{O P}=\frac{\mu \overrightarrow{O A}+\lambda \overrightarrow{O B}}{\mu+\lambda}$

3.1 Scalar products

- The scalar product of two vectors is defined as $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$.
- The vectors must both converge or diverge from one point.
- $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$.
- Most algebra works, except for cancellation and division.
- $\mathbf{a} \perp \mathbf{b} \Longleftrightarrow \mathbf{a} \cdot \mathbf{b}=0$.
- $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \cdot\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.

3.2 Vector products

- The vector product of two vectors is defined as $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \hat{\mathbf{n}}$.
- $\hat{\mathbf{n}}$ is a unit vector perpendicular to \mathbf{a} and \mathbf{b}.
- $(\mathbf{a} \times \mathbf{b})=-(\mathbf{b} \times \mathbf{a})$.
- $(\lambda \mathbf{a}) \times(\mu \mathbf{b})=(\lambda \mu)(\mathbf{a} \times \mathbf{b})$.
- $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$.
- $\mathbf{a} \| \mathbf{b} \Longleftrightarrow \mathbf{a} \times \mathbf{b}=0$, hence $\mathbf{a} \times \mathbf{a}=0$.
- $\mathbf{a} \perp \mathbf{b} \Longleftrightarrow \mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}|$.
- $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0$.
- $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \times\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{c}a_{2} b_{3}-b_{2} a_{3} \\ -\left(a_{1} b_{3}-b_{1} a_{3}\right) \\ a_{1} b_{2}-b_{1} a_{2}\end{array}\right)$. Cover top find det, cover mid find negative det, cover bot find det.
- Area $\triangle A B C=\frac{1}{2}|\overrightarrow{A B}||\overrightarrow{A C}| \sin \theta=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|$.

3.3 Projections and resolving vectors

- The length of the horizontal projection of \mathbf{a} onto $\mathbf{b}=\overrightarrow{O N}=|\mathbf{a}||\hat{\mathbf{b}}| \cos \theta=\mathbf{a} \cdot \hat{\mathbf{b}}$
- The length of the vertical projection is given by $|A N|=|\mathbf{a} \times \hat{\mathbf{b}}|$
- The horizontal projection vector is then $\mathbf{u}=(\mathbf{a} \cdot \hat{\mathbf{b}}) \hat{\mathbf{b}}$, which is the same as the resolved component of \mathbf{a} parallel to b.
- The perpendicular component of \mathbf{a} is $\mathbf{v}=\mathbf{a}-\mathbf{u}$.

3.4 Straight lines

$$
l: \quad \mathbf{r}=\mathbf{a}+\lambda \mathbf{d}, \quad \lambda \in \mathbb{R} .
$$

- The vector equation of a line uses a position vector a of a fixed point on l, and a direction vector \mathbf{d} parallel to l, to find the position vector of any point on the line (r).
- λ is a real parameter, which means that the vector equation of a line is not unique.
- To get the parametric form, we write the equation as column vectors then equate components:

$$
\left\{\begin{array}{l}
x=\mathbf{a}_{\mathbf{1}}+\lambda \mathbf{d}_{\mathbf{1}}, \\
y=\mathbf{a}_{\mathbf{2}}+\lambda \mathbf{d}_{\mathbf{2}}, \quad \lambda \in \mathbb{R} \\
z=\mathbf{a}_{\mathbf{3}}+\lambda \mathbf{d}_{\mathbf{3}},
\end{array}\right.
$$

- To get the Cartesian form, make λ the subject then eliminate it.

$$
\left\{\begin{array} { l }
{ x = \mathbf { a } _ { 1 } + \lambda \mathbf { d } _ { \mathbf { 1 } } , } \\
{ y = \mathbf { a } _ { 2 } + \lambda \mathbf { d } _ { \mathbf { 2 } } , } \\
{ z = \mathbf { a } _ { 3 } + \lambda \mathbf { d } _ { 3 } }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
\frac{x-\mathbf{a}_{1}}{\mathbf{d}_{1}}=\lambda, \\
\frac{y-\mathbf{a}_{2}}{\mathbf{d}_{2}}=\lambda, \\
\frac{z-\mathbf{a}_{3}}{\mathbf{d}_{3}}=\lambda
\end{array} \quad \Longrightarrow \frac{x-\mathbf{a}_{1}}{\mathbf{d}_{1}}=\frac{y-\mathbf{a}_{2}}{\mathbf{d}_{\mathbf{2}}}=\frac{z-\mathbf{a}_{3}}{\mathbf{d}_{3}}(=\lambda)\right.\right.
$$

- l_{1} and l_{2} are parallel $\Longleftrightarrow \mathbf{d}_{\mathbf{1}}$ and $\mathbf{d}_{\mathbf{2}}$ are parallel $\Longleftrightarrow \mathbf{d}_{\mathbf{1}}=k \mathbf{d}_{\mathbf{2}}$, for some $k \in \mathbb{R}$.
- l_{1} and l_{2} intersect \Longleftrightarrow
- $\mathbf{d}_{\mathbf{1}}$ is not parallel to $\mathbf{d}_{\mathbf{2}}$ AND
- there exist unique values of λ and μ such that $\mathbf{a}_{\mathbf{1}}+\lambda \mathbf{d}_{\mathbf{1}}=\mathbf{a}_{\mathbf{2}}+\mu \mathbf{d}_{\mathbf{2}}$.
- The lines are skew \Longleftrightarrow the direction vectors aren't parallel and there aren't unique values of λ and μ.
- The acute angle between two lines is given by $\cos ^{-1}\left|\frac{\mathbf{d}_{1} \cdot \mathbf{d}_{2}}{\left|\mathbf{d}_{1}\right|\left|\mathbf{d}_{2}\right|}\right|$.

3.5 Planes

$$
\overrightarrow{A P} \perp \mathbf{n} \Longrightarrow \overrightarrow{A P} \cdot \mathbf{n}=0 \Longrightarrow(\mathbf{r}-\mathbf{a}) \cdot \mathbf{n}=0
$$

- The scalar product form of the vector equation of the plane is $\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$, where \mathbf{a} is a fixed point on the plane.
- n can be found by taking the cross product of two known vectors parallel to the plane.
- The shortest distance between the origin and the plane: $|d|=|\mathbf{a} \cdot \hat{\mathbf{n}}|$
- The parametric form of the vector equation of the plane:

$$
\Pi: \quad \mathbf{r}=\mathbf{a}+\lambda \mathbf{d}_{\mathbf{1}}+\mu \mathbf{d}_{\mathbf{2}}, \quad \lambda, \mu \in \mathbb{R}
$$

- By expanding the scalar product form, we can arrive at the Cartesian form:

$$
\mathbf{r} \cdot \mathbf{n}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=a x+b y+c z=D
$$

- A line will be parallel to a plane if it is perpendicular to \mathbf{n}, i.e $\mathbf{n} \cdot \mathbf{d}=0$ and there is no common point.
- If not parallel, it will intersect at a point, which can be found by substituting the line equation into the plane equation.
- The acute angle between l and $\Pi: \sin \theta=\left|\frac{\mathbf{d} \cdot \mathbf{n}}{|\mathbf{d}||\mathbf{n}|}\right|$
- When planes intersect, their Cartesian forms can be combined to form a system of simultaneous equations
- If there is a unique solution, the planes intersect at a point.
- If there are infinitely many solutions, the planes intersect in a line.
- If there are no solutions, the three planes do not intersect.

4 Calculus

4.1 Differentiation

- If the limit of the denominator of a rational function is zero, you cannot substitute to find the limit: either 'juggle' or use l'Hopital's rule, e.g:

$$
\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)=\lim _{x \rightarrow 0}\left(\frac{\cos x}{1}\right)=1
$$

- The definition of the derivative:

$$
f^{\prime}(x)=\lim _{\delta x \rightarrow 0}\left(\frac{f(x+\delta x)-f(x)}{\delta x}\right)
$$

- Special derivatives:
$\frac{d}{d x}(\sec x)=\sec x \tan x$
$\frac{d}{d x}(\csc x)=-\csc x \cot x$
$\frac{d}{d x}(\cot x)=-\csc ^{2} x$
$\frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}(\arccos x)=-\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}}$
$\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
$\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}$
- $f(x)$ is an increasing function on (a, b) if $\frac{d y}{d x} \geq 0$ on that interval, or a strictly increasing function if $\frac{d y}{d x}>0$.
- $f(x)$ is concave upwards on (a, b) if $\frac{d^{2} y}{d x^{2}}>0$.
- If the derivative at a point is zero, the function is stationary.
- If the derivative at a point is ∞, there is a vertical line.
- For a point of inflexion, $\frac{d^{2} y}{d x^{2}}=0$ AND the sign of $\frac{d^{2} y}{d x^{2}}$ changes, i.e concativity changes.
- Sketching the graph of $f^{\prime}(x)$ given $f(x)$:
- Stationary point $\rightarrow x$-intercept.
$-f(x)$ increasing $\rightarrow f^{\prime}(x)$ above x-axis.
- Point of inflexion \rightarrow turning point.
- The gradient at any point on the curve: $m=\left.\frac{d y}{d x}\right|_{x=x_{0}}$.
- The equation of a tangent to the curve at $\left(x_{0}, y_{0}\right): y-y_{0}=m\left(x-x_{0}\right)$.
- If two variabels are related, their rates of change are also related:

$$
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

- In kinematics especially:

$$
a=\frac{d v}{d t}=\frac{d v}{d x} \cdot \frac{d s}{d t}=v \frac{d v}{d s}
$$

4.2 Integration

$\int(p x+q)^{n} d x=\frac{(p x+q)^{n+1}}{p(n+1)}+C$
$\int f^{\prime}(x)(f(x))^{n} d x=\frac{(f(x))^{n+1}}{n+1}+C$
$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C$
$\int \frac{1}{x \ln x} d x=\int \frac{x^{-1}}{\ln x}+C=\ln |\ln | x| |+C$
$\int \tan x d x=\ln |\sec x|+C$
$\int \sec x d x=\ln |\sec x+\tan x|+C$
$\int \csc x d x=-\ln |\csc x+\cot x|+C$
$\int \frac{1}{(x+k)^{2}+a^{2}} d x=\frac{1}{a} \arctan \left(\frac{x+k}{a}\right)+C$
$\int \frac{1}{\sqrt{a^{2}-(x+k)^{2}}} d x=\arcsin \left(\frac{x+k}{a}\right)+C$

- To integrate $\sin ^{2} x$ or $\cos ^{2} x$, we expand $\cos (2 x)$ and rearrange.
- To integrate $\sin ^{3} x$, split into $\int \sin x\left(\sin ^{2} x\right) d x$, then use $\sin ^{2} x+\cos ^{2} x=1$.
- If the integral is of the form:

$$
\int \frac{p x+q}{\sqrt{A x^{2}+B x+C}} d x \quad \text { or } \quad \int \frac{p x+q}{A x^{2}+B x+C} d x
$$

use sorcery to change it into $\int \frac{f^{\prime}(x)}{f(x)} d x$ or $\int f^{\prime}(x)(f(x))^{n} d x$.

- Integration by substitution:

1. Replace $d x$ by $\frac{d x}{d t} \cdot d t$.
2. Substitute by replacing all x with $g(t)$.

Then: $\int f(x) d x=\int f(g(t)) \frac{d x}{d t} \cdot d t$

- Integration by parts:
$\int u d v=u v-\int v d u$
- To choose which one to differentiate, use LIATE: Logs, Inverse trig, Algebraic, Trig, Exponentials.

4.3 Definite integrals

- $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
- The definite integral $\int_{a}^{b} f(x) d x$ can only be found if $f(x)$ is defined for all $x \in(a, b)$.
- The area between a curve and the y-axis: $\int_{a}^{b} f(y) d y$
- If a function is difficult to integrate, try integrating its inverse w.r.t y then subtract from a rectangle. e.g:

$\int_{0}^{\sqrt{3}} \arctan x d x=\frac{\pi \sqrt{3}}{3}-\int_{0}^{\frac{\pi}{3}} \tan y d y$
- The area between the curve and the axis is always $\int_{a}^{b}|f(x)| d x$.
- The area between two curves is always $\int_{a}^{b} y_{1}-y_{2} d x$.
- The volume of revolution:

$$
V=\pi \int_{a}^{b} y^{2} d x
$$

- The volume of revolution of the area enclosed by two curves:

$$
V=\pi \int_{a}^{b}\left(y_{1}\right)^{2} d x-\pi \int_{a}^{b}\left(y_{2}\right)^{2} d x
$$

5 Probability and Statistics

5.1 Probability

- Two events A and B are mutually exclusive if $P(A \cap B)=0$.
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.
- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$.
- A and B are independent if $P(A \mid B)=P(A)$, so if they are independent $P(A \cap B)=P(A) P(B)$.

5.2 Discrete random variables

- $P(X=x)$ is the probability that the r.v X will assume a value of x.
- A discrete r.v can assume a countable number of values.
- For a d.r.v taking values $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, the probability distribution is defined as $P\left(X=x_{i}\right)$, such that:

$$
0 \leq P\left(X=x_{i}\right) \leq 1 \quad \text { and } \quad \sum_{\text {all } i} P\left(X=x_{i}\right)=1
$$

- The expectation of a d.r.v:
$E(X)=\mu=\sum x P(X=x)$
$E(g(X))=\sum g(x) P(X=x)$
$E(a)=a$
$E(a X \pm b)=a E(X) \pm b$
$E(X \pm Y)=E(X) \pm E(Y)$
- The variance of a d.r.v:
$\operatorname{Var}(X)=\sigma^{2}=E\left((x-\mu)^{2}\right)=E\left(X^{2}\right)-[E(X)]^{2}$
$\operatorname{Var}(a)=0$
$\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
$\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \quad$ (only if X and Y are independent)
- Note: never subtract variance.

5.3 Discrete distributions

The Binomial distribution

$$
X \sim B(n, p) \quad P(X=x)=\binom{n}{x} p^{x} q^{n-x} \quad E(X)=n p \quad \operatorname{Var}(X)=n p q
$$

- There are n independent trials, two possible outcomes (either 'success' or 'failure'), with constant probability of success p, X is the number of 'successes'.
- The Binomial distribution is a combination of n Bernoulli trials.
- For $P(X \leq x)$, we find $P(X=0)+P(X=1)+P(X=2)+\ldots+P(X=x)$.

The Poisson distribution

$$
X \sim \operatorname{Po}(\lambda) \quad P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad E(X)=\operatorname{Var}(X)=\lambda
$$

- For a random variable in time or space, if there is no chance of simultaneous events, the events are independent, and the events have a constant probability of occuring, it is a Poisson process.
- λ is the parameter, and defines the number of events in a given time/space.
- If $X \sim \operatorname{Po}(\lambda)$ and $Y \sim \operatorname{Po}(\mu)$, then $X+Y \sim \operatorname{Po}(\lambda+\mu)$.

The Geometric distribution

$$
X \sim G e o(p) \quad P(X=x)=p q^{x-1}, x \geq 1 \quad E(X)=\frac{1}{p} \quad \operatorname{Var}(X)=\frac{q}{p^{2}}
$$

If we perform a series of independent trials with a probability p of success, X is the number of trials up to and including the first success.

$$
\begin{aligned}
& P(X>x)=P(X=x+1)+P(X=x+2)+\ldots \\
&=p q^{x}+p q^{x+1}+p q^{x+2}+\ldots \\
&=p q^{x}\left(1+q+q^{2}+\ldots\right)=p q^{x}\left(\frac{1}{1-q}\right)=q^{x} \\
& P(X>a+b \mid X>a)=P(X>b)=q^{b}
\end{aligned}
$$

$\underline{\text { The Negative Binomial distribution }}$

$$
X \sim N B(r, p) \quad P(X=x)=\binom{x-1}{r-1} p^{r} q^{x-r}, r \geq 1, x \geq 1 \quad E(X)=\frac{r}{p} \quad \operatorname{Var}(X)=\frac{r q}{p^{2}}
$$

- X is the number of trials needed to achieve r successes.
- The Negative Binomial distribution is just a combination of r geometric trials.

5.4 Continuous random variables and CDFs

- Instead of probability distributions, we have probability density functions (PDFs), denoted by $f(x)$.
$-f(x) \geq 0$ for all $x \in \mathbb{R}$
$-\int_{-\infty}^{\infty} f(x) d x=1$
$-\int_{-\infty}^{\infty} f(x) d x=1$
- Continuous \Longrightarrow uncountable, so $P(X=x)=0$. Therefore, \geq or $>$ is irrelevant.
$P(a<X<b)=\int_{a}^{b} f(x) d x$
$E(X)=\mu=\int_{-\infty}^{\infty} x f(x) d x$
$E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x$
$P(|X-a|<b)=P(-b<X-a<b)$
- The mode of a c.r.v is the value of x which gives the maximum probability, i.e the x coordinate of the highest point in the domain.
- The cumulative distribution function (CDF):
$F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t$
$\lim _{x \rightarrow-\infty} F(x)=0 \quad \lim _{x \rightarrow \infty} F(x)=1$
$P(a<X<b)=F(b)-F(a)$
$\frac{d}{d x} F(x)=f(x)$
- $F(x)$ is continuous and increasing (since $f(x)>0$).
- To find the median m, set $F(m)=\frac{1}{2}$ and solve for m, i.e: $\int_{-\infty}^{m} f(t) d t=0.5$

5.5 The Normal distribution

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

- The Normal distribution is a bell curve symmetrical about $x=\mu$.
- The mean $=$ median $=$ mode $=\mu$.
- μ affects the location of the curve, whereas σ^{2} affects the spread.
- The standard normal distribution is denoted by $Z \sim N(0,1)$.
- Any normal distribution can be standardised: $Z=\frac{X-\mu}{\sigma}$
- The Z score represents the number of standard deviations away from the mean.
- To find c given $P(X<c)=p$, use invNorm.
- If $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, then $a X+b Y$ also has a normal distribution.

$$
\begin{aligned}
E(a X+b Y) & =a E(X)+b E(Y) \\
& =a \mu_{1}+b \mu_{2} \\
\operatorname{Var}(a X+b Y) & =a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2} \\
a X+b Y \sim N\left(a \mu_{1}\right. & \left.+b \mu_{2}, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right)
\end{aligned}
$$

5.6 Sampling

- If X is a random variable, $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ are a sample of n independent observations.
- The sample mean:

$$
\begin{gathered}
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \\
E(\bar{X})=E\left(\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}\right)=\frac{n E(X)}{n}=E(X)=\mu \\
\operatorname{Var}(\bar{X})=\operatorname{Var}\left(\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(X_{1}+X_{2}+\ldots+X_{n}\right)=\frac{n \operatorname{Var}(X)}{n^{2}}=\frac{\sigma^{2}}{n}
\end{gathered}
$$

- For the sample sum: $E(S)=n \mu, \operatorname{Var}(S)=n \sigma^{2}$
- Therefore, in a normal population:

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \quad \sum_{r=1}^{n} X_{r} \sim N\left(n \mu, n \sigma^{2}\right)
$$

- The Central Limit Theorem states that, for a large sample size ($n \geq 50$), the sample mean/sum of a sample from any distribution (e.g not normal), will approximately follow the normal distribution.

5.7 Estimators

- An estimator is a test statistic T based on observed data that estimates an unknown parameter θ.
- The estimator is unbiased if $E(T)=\theta$.
- The sample mean is an unbiased estimator of μ since $E(\bar{X})=\mu$.
- However, the sample variance is not an unbiased estimator for σ^{2} since $E\left(S_{n}^{2}\right)=\frac{n-1}{n} \sigma^{2}$.
- An unbiased estimator for σ^{2} :

$$
\begin{aligned}
s_{n-1}^{2}=\frac{n}{n-1} \times S_{n}^{2} & =\frac{n}{n-1}\left(\frac{1}{n} \sum x^{2}-(\bar{x})^{2}\right) \\
& =\frac{1}{n-1}\left(\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right)
\end{aligned}
$$

- An unbiased estimator is more efficient than another if it has a lower variance.

5.8 Confidence intervals

- A 95% confidence interval (CI) means that there is a 95% chance that the interval includes μ.
- For $X \sim N\left(\mu, \sigma^{2}\right)$, if we take a sample: $\bar{X} \sim N\left(\mu, \sigma^{2}\right)$.

$$
\begin{aligned}
& \text { Confidence limits }=\bar{X} \pm Z_{k} \frac{\sigma}{\sqrt{n}} \\
& \mathrm{CI}=\left[\bar{X}-Z_{k} \frac{\sigma}{\sqrt{n}}, \quad \bar{X}+Z_{k} \frac{\sigma}{\sqrt{n}}\right]
\end{aligned}
$$

- Z_{k} is the critical value, and is found using invNorm.
- For a 95% CI: $\operatorname{invNorm}(0.025)=-1.96$

- The width of a CI is $2 Z_{k} \frac{\sigma}{\sqrt{n}}$
- If we have a large sample from any population (μ and σ^{2} unknown), we can use the CLT.

$$
\mathrm{CI}=\left[\bar{x}-Z_{k} \frac{s_{n-1}}{\sqrt{n}}, \bar{x}+Z_{k} \frac{s_{n-1}}{\sqrt{n}}\right]
$$

- If the population is normal but we do not know the variance, we use the t-distribution.
$T=\frac{\bar{X}-\mu}{s_{n-1} / \sqrt{n}}$ follows a t-distribution with $n-1$ degrees of freedom.

$$
\mathrm{CI}=\left[\bar{x}-t_{k} \frac{s_{n-1}}{\sqrt{n}}, \bar{x}+t_{k} \frac{s_{n-1}}{\sqrt{n}}\right]
$$

σ^{2}	n	Assumptions	Test Statistic
known	large	CLT	$Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$
	small	normal	
unknown	large	CLT	$Z=\frac{X-\mu}{s_{n-1} / \sqrt{n}} \sim N(0,1)$
	small	normal	$T=\frac{X-\mu}{s_{n-1} / \sqrt{n}} \sim t_{n-1}$

5.9 Hypothesis testing

1. State H_{0} and H_{1}.
2. Test statistic.
3. Level of significance and rejection criteria.
4. Compute p-value (or z-value or t-value).
5. Conclusion in context.
e.g
$H_{0}: \mu=3$
$H_{1}: \mu>3$
Test statistic: $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$
Sig level $=5 \%$, one tailed.
Reject H_{0} if $p<0.05$
Since p-value $=0.03<0.05$, we reject H_{0} and conclude that there is significant evidence at the 5% level that...

- $P($ Type I Error $)=P\left(H_{0}\right.$ rejected $\mid H_{0}$ true $)=\alpha \%$. i.e $P($ Type I Error $)=$ significance level.
- $P($ Type II Error $)=P\left(H_{0}\right.$ accepted $\mid H_{1}$ true $)$.
- For example, for $H_{0}: \mu=\mu_{0} \quad H_{1}: \mu=\mu_{1}$,

$$
P(\text { Type II Error })=P\left(H_{0} \text { accepted } \mid H_{1} \text { true }\right)=P\left(\bar{X}<\text { critical value } \mid \bar{X} \sim N\left(\mu_{1}, \sigma^{2}\right)\right)
$$

5.10 PGFs

$$
\begin{gathered}
G(t)=E\left(t^{X}\right)=\sum t^{x} P(X=x) \\
G(1)=1 \\
G^{\prime}(t)=\sum x t^{x-1} P(X=x) \therefore E(X)=G^{\prime}(1) \\
G^{\prime \prime}(t)=\sum x(x-1) t^{x-2} P(X=x) \\
G^{\prime \prime}(1)=\sum x^{2} P(X=x)-\sum x P(X=x)=E\left(X^{2}\right)-E(X) \\
\therefore E\left(X^{2}\right)=G^{\prime \prime}(1)+G^{\prime}(1) \\
\therefore \operatorname{Var}(X)=G^{\prime \prime}(1)+G^{\prime}(1)-\left[G^{\prime}(1)\right]^{2}
\end{gathered}
$$

$$
\text { If } Z=X+Y, G_{Z}(t)=E\left(t^{Z}\right)=E\left(t^{X+Y}\right)=E\left(t^{X}\right) E\left(t^{Y}\right)=G_{X}(t) G_{Y}(t)
$$

- To find $P(X=n)$, we use the Maclaurin series: $P(X=n)=\frac{G^{(n)}(0)}{n!}$.
- To prove most things about PGFs, differentiation will be involved (sometimes using the product rule and chain rule).
Binomial
If $Y \sim B(n, p)$, we can say that $Y=X_{1}+X_{2}+X_{3}+\ldots+X_{n}$ where X is a Bernoulli trial.

x	0	1
$P(X=x)$	q	p

$G_{X}(t)=\sum t^{x} P(X=x)=q+p t$
$G_{Y}(t)=E\left(t^{Y}\right)=E\left(t^{X_{1}+\ldots+X_{n}}\right)=\left[E\left(t^{X}\right)\right]^{n}=\left[G_{X}(t)\right]^{n}=(q+p t)^{n}$

Poisson

If $X \sim P o(\lambda), P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$.

$$
\begin{aligned}
G(t)=E\left(t^{X}\right) & =\sum t^{x} P(X=x) \\
& =\sum t^{x} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =e^{-\lambda} \sum \frac{(\lambda t)^{x}}{x!}=e^{-\lambda} e^{\lambda t}=e^{\lambda(t-1)}
\end{aligned}
$$

Geometric

If $X \sim G e o(p), P(X=x)=p q^{x-1}$.

$$
\begin{aligned}
G(t)=E\left(t^{X}\right) & =\sum t^{x} P(X=x) \\
& =\sum t^{x} p q^{x-1} \\
& =p t+p t^{2} q+p t^{3} q^{2}+p t^{4} q^{3}+\ldots+p t^{n} q^{n-1}+\ldots \\
S_{\infty} & =\frac{a}{1-r}=\frac{p t}{1-q t}
\end{aligned}
$$

Negative Binomial

If $Y \sim N B(r, p)$, we can say that $Y=X_{1}+X_{2}+X_{3}+\ldots+X_{r}$, where $X \sim G e o(p)$.

$$
G_{Y}(t)=E\left(t^{Y}\right)=E\left(t^{X_{1}+\ldots+X_{r}}\right)=\left[E\left(t^{X}\right)\right]^{r}=\left[G_{X}(t)\right]^{r}=\left(\frac{p t}{1-q t}\right)^{r}
$$

5.11 Bivariate data and correlations

- If X and Y are random variables, the joint probability distribution is $P(X=x \cap Y=y)$.
- $\sum \sum p(x, y)=1$
- $E(X Y)=\sum \sum x y p(x, y)$
- $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y) . X$ and Y independent $\Longrightarrow \operatorname{Cov}(X, Y)=0$.
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)$.
- The correlation coefficient measures the linear relationship between X and Y

$$
\rho=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

- A bivariate sample consists of pairs of data $\left(x_{1}, y_{1}\right)$. For a bivariate sample, the above points do not apply.

$$
r=\frac{\sum x y-n \bar{x} \bar{y}}{\sqrt{\left(\sum x^{2}-n \bar{x}^{2}\right)\left(\sum y^{2}-n \bar{y}^{2}\right)}}=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}, \text { where } S_{x x}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}
$$

- If $r=0$, there is no linear relationship, but it does not imply that X and Y are independent.
- r is independent of the units, and does not show any causality.
- In maths, controlled variable $=$ independent variable.
- The y-on- x regression line $y=a+b x$ will always pass through (\bar{x}, \bar{y}).

$$
y-\bar{y}=b(x-\bar{x}), \text { where } b=\frac{S_{x y}}{S_{x x}}
$$

- The x-on- y regression line is denoted by $x=c+d y$.

$$
b d=r^{2} \quad r= \pm \sqrt{b d}, \text { the sign depends on whether the gradient is positive or negative. }
$$

- We can statistically test evidence of a correlation by assuming both variables follow a bivariate normal distribution with correlation coefficient ρ :
$H_{0}: \rho=0$
$H_{1}: \rho \neq 0$
Test statistic: $T=r \sqrt{\frac{n-2}{1-r^{2}}} \sim t_{n-2}$
Sig level $=5 \%$, two tailed.
Reject H_{0} if $|T|>\operatorname{invt}(0.975, n-2)$
Note: $T=r \sqrt{\frac{n-2}{1-r^{2}}}$ (sub in values)
Since $|T|=0.08>\operatorname{invt}(0.975, n-2)$, we reject H_{0} and conclude that there is significant evidence at the 5% level that there is a correlation between...

6 Complex numbers

6.1 Forms of complex numbers

- The Cartesian form of a complex number: $z=x+i y$. This relates a complex number to its real and imaginary parts. $x=\operatorname{Re}(z), y=\operatorname{Im}(z)$.
- The Polar form, a.k.a the trigonometric form or modulus-argument form:

$$
z=r(\cos \theta+i \sin \theta)=r \operatorname{cis}(\theta)
$$

- r is the modulus of $z: r=|z|=\sqrt{x^{2}+y^{2}}$.
- The argument of $z(\theta$ or $\arg z)$ is the angle from the positive real axis to the line $\overrightarrow{O Z}$. The principal value of $\arg z$ is the angle in the interval $(-\pi, \pi]$.
- The argument can be found using $\arctan (y / x)$, but you must consider the quadrant.
$-\arg 2=0 \quad \arg (-3)=\pi$
$-\arg (3 i)=\pi / 2 \quad \arg (-4 i)=-\pi / 2$
$-\arg 0$ is undefined.
- Using the Maclaurin expansions of $e^{x}, \cos x$ and $\sin x$, we can derive Euler's beautiful formula:

$$
e^{i x}=\cos x+i \sin x
$$

- We can then write complex numbers in the exponential or Euler form: $z=r e^{i \theta}$, for θ in radians.

Complex conjugates

- The conjugate of z is given by $z^{*}=x-i y$.
- It is interpreted on an Argand diagram as a reflection in the real axis.
- Because of this, $\arg z=-\arg z^{*}$ so $z^{*}=r \operatorname{cis}(-\theta)=r e^{-i \theta}$.
- Properties of conjugates
$-\left(z^{*}\right)^{*}=z$
$-(z+w)^{*}=z^{*}+w^{*}$
$-(z w)^{*}=z^{*} w^{*} \Longrightarrow\left(z^{n}\right)^{*}=\left(z^{*}\right)^{n}$
$-z+z^{*}=2 \operatorname{Re}(z)$
$-z-z^{*}=2 i \operatorname{Im}(z)$
$-z z^{*}=x^{2}+y^{2}=|z|^{2}$
$-z^{*}=r^{2} / z$

6.2 Operations on complex numbers

- When adding and subtracting complex numbers, we group real and imaginary parts.
- To multiply complex numbers in Cartesian form, we can expand the brackets.
- To multiply complex numbers in the Euler form, multiply moduli and add arguments:

$$
z_{1} z_{2}=\left(r_{1} e^{i \theta_{1}}\right)\left(r_{2} e^{i \theta_{2}}\right)=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

- To divide complex numbers, we subtract their arguments.
- De Moivre's Theorem states that, if $z=r(\cos \theta+i \sin \theta)$,

$$
z^{n}=r^{n}(\cos n \theta+i \sin n \theta), \text { for all } n \in \mathbb{R}
$$

- It follows that $\left|z^{n}\right|=|z|^{n}$.

6.3 Relation to trigonometry

$$
\begin{gathered}
z+z^{*}=e^{i \theta}+e^{-i \theta}=(\cos \theta+i \sin \theta)+(\cos \theta-i \sin \theta)=2 \cos \theta \\
z-z^{*}=e^{i \theta}-e^{-i \theta}=(\cos \theta+i \sin \theta)-(\cos \theta-i \sin \theta)=2 i \sin \theta \\
\Longrightarrow \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \text { and } \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
\end{gathered}
$$

When simplifying expressions involving $e^{i \theta} \pm 1$, we can use this trick:

$$
\begin{aligned}
& e^{i \theta}+1=e^{i \frac{\theta}{2}}\left(e^{i \frac{\theta}{2}}+e^{-i \frac{\theta}{2}}\right)=2 e^{i \frac{\theta}{2}} \cos \frac{\theta}{2} \\
& e^{i \theta}-1=e^{i \frac{\theta}{2}}\left(e^{i \frac{\theta}{2}}-e^{-i \frac{\theta}{2}}\right)=2 i e^{i \frac{\theta}{2}} \sin \frac{\theta}{2}
\end{aligned}
$$

Trigonometric identities

- Write $\cos 3 \theta$ in terms of $\cos \theta$.

$$
\cos 3 \theta=\operatorname{Re}(\cos 3 \theta+i \sin 3 \theta)=\operatorname{Re}\left((\cos \theta+i \sin \theta)^{3}\right) \text { (by De Moivre's Theorem). }
$$

But using a binomial expansion, $(\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta+3 \cos ^{2} \theta(i \sin \theta)+3 \cos \theta(i \sin \theta)^{2}+(i \sin \theta)^{3}$

$$
\begin{aligned}
& \cos 3 \theta=\operatorname{Re}\left(\cos ^{3} \theta+3 \cos ^{2} \theta(i \sin \theta)+3 \cos \theta(i \sin \theta)^{2}+(i \sin \theta)^{3}\right) \\
& \Longrightarrow \cos 3 \theta=\cos ^{3} \theta+3 \cos \theta(i \sin \theta)^{2}=\cos ^{3} \theta-\cos \theta\left(1-\cos ^{2} \theta\right) \\
& \therefore \cos 3 \theta=4 \cos ^{3} \theta-\cos \theta . \quad Q E D .
\end{aligned}
$$

- Express $\sin ^{3} \theta$ in terms of sines of multiples of θ. To begin, let $z=\operatorname{cis}(\theta)$.

$$
\left(z-\frac{1}{z}\right)^{3}=z^{3}-\frac{3 z^{2}}{z}+\frac{3 z}{z^{2}}-\frac{1}{z^{3}}=\left(z^{3}-\frac{1}{z^{3}}\right)-3\left(z-\frac{1}{z}\right)
$$

For a complex number of unit modulus, $\left(z^{n}-\frac{1}{z^{n}}\right)=\left(z^{n}-\left(z^{n}\right)^{*}\right)=2 i \sin n \theta$

$$
\begin{aligned}
& \Longrightarrow(2 i \sin \theta)^{3}=2 i \sin 3 \theta-3(2 i \sin \theta) \\
& \Longrightarrow-8 i \sin ^{3} \theta=2 i \sin 3 \theta-6 i \sin \theta
\end{aligned}
$$

$\therefore \sin ^{3} \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta . \quad Q E D$.

- For cosines, we instead use $z+\frac{1}{z}$.

6.4 Polynomials

- A quadratic will have complex roots if the discriminant $b^{2}-4 a c<0$.
- In general, the complex roots of a quadratic with real coefficients will always be a conjugate pair.
- A cubic will either have 3 real roots or 1 real root and 2 conjugate complex roots. If we know one of the complex roots, we know its conjugate and can multiply out. Long division will help us find the real root.

$$
\begin{gathered}
(x-(a+b i))(x-(a-b i))=x^{2}-2 a x+\left(a^{2}+b^{2}\right) \\
(x-z)\left(x-z^{*}\right)=x^{2}-2 \operatorname{Re}(z)+|z|^{2}
\end{gathered}
$$

6.5 Roots of complex numbers

- There are n values of z that solve $z^{n}=1$ (because of the Fundamental Theorem of Algebra); these are known as the nth roots of unity.
- To find these, we rewrite the RHS: $1=e^{i(0+2 k \pi)}$. As a result,

$$
z=e^{i \frac{2 k \pi}{n}}, \text { for } k=1,2,3, \ldots, n
$$

- Alternatively, use $k=0, \pm 1, \pm 2, \ldots$ in order to make sure that arguments will be within the principal range.
- Note that each of the roots will form on a unit circle.
- More generally, for the nth roots of a complex number c,

$$
z=r^{1 / n} e^{i \frac{\theta+2 k \pi}{n}}, \text { for } k=1,2,3, \ldots, n .
$$

7 Miscellaneous

- $(a \pm b)^{3}=a^{3} \pm 3 a^{2} b+3 a b^{2} \pm b^{3}$
- $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
- $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
- $|x+3||x+2|=|(x+3)(x+2)|$

